453 research outputs found

    Weight Space Structure and Internal Representations: a Direct Approach to Learning and Generalization in Multilayer Neural Network

    Full text link
    We analytically derive the geometrical structure of the weight space in multilayer neural networks (MLN), in terms of the volumes of couplings associated to the internal representations of the training set. Focusing on the parity and committee machines, we deduce their learning and generalization capabilities both reinterpreting some known properties and finding new exact results. The relationship between our approach and information theory as well as the Mitchison--Durbin calculation is established. Our results are exact in the limit of a large number of hidden units, showing that MLN are a class of exactly solvable models with a simple interpretation of replica symmetry breaking.Comment: 12 pages, 1 compressed ps figure (uufile), RevTeX fil

    Sign problem in the Bethe approximation

    Full text link
    We propose a message-passing algorithm to compute the Hamiltonian expectation with respect to an appropriate class of trial wave functions for an interacting system of fermions. To this end, we connect the quantum expectations to average quantities in a classical system with both local and global interactions, which are related to the variational parameters and use the Bethe approximation to estimate the average energy within the replica-symmetric approximation. The global interactions, which are needed to obtain a good estimation of the average fermion sign, make the average energy a nonlocal function of the variational parameters. We use some heuristic minimization algorithms to find approximate ground states of the Hubbard model on random regular graphs and observe significant qualitative improvements with respect to the mean-field approximation.Comment: 19 pages, 9 figures, one figure adde

    Message passing algorithms for non-linear nodes and data compression

    Full text link
    The use of parity-check gates in information theory has proved to be very efficient. In particular, error correcting codes based on parity checks over low-density graphs show excellent performances. Another basic issue of information theory, namely data compression, can be addressed in a similar way by a kind of dual approach. The theoretical performance of such a Parity Source Coder can attain the optimal limit predicted by the general rate-distortion theory. However, in order to turn this approach into an efficient compression code (with fast encoding/decoding algorithms) one must depart from parity checks and use some general random gates. By taking advantage of analytical approaches from the statistical physics of disordered systems and SP-like message passing algorithms, we construct a compressor based on low-density non-linear gates with a very good theoretical and practical performance.Comment: 13 pages, European Conference on Complex Systems, Paris (Nov 2005

    A rigorous analysis of the cavity equations for the minimum spanning tree

    Full text link
    We analyze a new general representation for the Minimum Weight Steiner Tree (MST) problem which translates the topological connectivity constraint into a set of local conditions which can be analyzed by the so called cavity equations techniques. For the limit case of the Spanning tree we prove that the fixed point of the algorithm arising from the cavity equations leads to the global optimum.Comment: 5 pages, 1 figur

    Inference and learning in sparse systems with multiple states

    Full text link
    We discuss how inference can be performed when data are sampled from the non-ergodic phase of systems with multiple attractors. We take as model system the finite connectivity Hopfield model in the memory phase and suggest a cavity method approach to reconstruct the couplings when the data are separately sampled from few attractor states. We also show how the inference results can be converted into a learning protocol for neural networks in which patterns are presented through weak external fields. The protocol is simple and fully local, and is able to store patterns with a finite overlap with the input patterns without ever reaching a spin glass phase where all memories are lost.Comment: 15 pages, 10 figures, to be published in Phys. Rev.

    Encoding for the Blackwell Channel with Reinforced Belief Propagation

    Full text link
    A key idea in coding for the broadcast channel (BC) is binning, in which the transmitter encode information by selecting a codeword from an appropriate bin (the messages are thus the bin indexes). This selection is normally done by solving an appropriate (possibly difficult) combinatorial problem. Recently it has been shown that binning for the Blackwell channel --a particular BC-- can be done by iterative schemes based on Survey Propagation (SP). This method uses decimation for SP and suffers a complexity of O(n^2). In this paper we propose a new variation of the Belief Propagation (BP) algorithm, named Reinforced BP algorithm, that turns BP into a solver. Our simulations show that this new algorithm has complexity O(n log n). Using this new algorithm together with a non-linear coding scheme, we can efficiently achieve rates close to the border of the capacity region of the Blackwell channel.Comment: 5 pages, 8 figures, submitted to ISIT 200

    Ferromagnetic ordering in graphs with arbitrary degree distribution

    Full text link
    We present a detailed study of the phase diagram of the Ising model in random graphs with arbitrary degree distribution. By using the replica method we compute exactly the value of the critical temperature and the associated critical exponents as a function of the minimum and maximum degree, and the degree distribution characterizing the graph. As expected, there is a ferromagnetic transition provided < \infty. However, if the fourth moment of the degree distribution is not finite then non-trivial scaling exponents are obtained. These results are analyzed for the particular case of power-law distributed random graphs.Comment: 9 pages, 1 figur

    Large deviations of cascade processes on graphs

    Full text link
    Simple models of irreversible dynamical processes such as Bootstrap Percolation have been successfully applied to describe cascade processes in a large variety of different contexts. However, the problem of analyzing non-typical trajectories, which can be crucial for the understanding of the out-of-equilibrium phenomena, is still considered to be intractable in most cases. Here we introduce an efficient method to find and analyze optimized trajectories of cascade processes. We show that for a wide class of irreversible dynamical rules, this problem can be solved efficiently on large-scale systems

    Tricritical point in the random 2+p-SAT problem

    Get PDF
    • …
    corecore